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Pattern-Oriented Modeling of Agent-Based
Complex Systems: Lessons from Ecology

Volker Grimm,1* Eloy Revilla,2 Uta Berger,3 Florian Jeltsch,4 Wolf M. Mooij,5 Steven F. Railsback,6

Hans-Hermann Thulke,1 Jacob Weiner,7 Thorsten Wiegand,1 Donald L. DeAngelis8

Agent-based complex systems are dynamic networks of many interacting agents; examples
include ecosystems, financial markets, and cities. The search for general principles
underlying the internal organization of such systems often uses bottom-up simulation
models such as cellular automata and agent-based models. No general framework for
designing, testing, and analyzing bottom-up models has yet been established, but recent
advances in ecological modeling have come together in a general strategy we call pattern-
oriented modeling. This strategy provides a unifying framework for decoding the internal
organization of agent-based complex systems and may lead toward unifying algorithmic
theories of the relation between adaptive behavior and system complexity.

W
hat makes James Bond an agent?

He has a clear goal, he is au-

tonomous in his decisions about

achieving the goal, and he adapts these de-

cisions to his rapidly changing situation. We

are surrounded by such autonomous, adaptive

agents: cells of the immune system, plants, citi-

zens, stock market investors, businesses, etc.

The agent-based complex systems (1) (ACSs)

around us are made up of myriad interacting

agents. One of the most important challenges

confronting modern science is to understand

and predict such systems. Bottom-up simula-

tion modeling is one tool for doing so: We

compile relevant information about entities at

a lower level of the system (in Bagent-based
models,[ these are individual agents), formu-

late theories about their behavior, implement

these theories in a computer simulation, and

observe the emergence of system-level prop-

erties related to particular questions (2, 3).

Bottom-up models have been developed

for many types of ACSs (4), but the identifi-

cation of general principles underlying the

organization of ACSs has been hampered by

the lack of an explicit strategy for coping

with the two main challenges of bottom-up

modeling: complexity and uncertainty (5, 6).

Consequently, model structure often is chosen

ad hoc, and the focus is often on how to

represent agents without sufficient emphasis

on analyzing and validating the applicability of

models to real problems (5, 7).

A strategy called pattern-oriented modeling

(POM) attempts to make bottom-up modeling

more rigorous and comprehensive (6, 8–10). In

POM, we explicitly follow the basic research

program of science: the explanation of ob-

served patterns (11). Patterns are defining char-

acteristics of a system and often, therefore,

indicators of essential underlying processes

and structures. Patterns contain information on

the internal organization of a system, but in a

Bcoded[ form. The purpose of POM is to

Bdecode[ this information (10).

The motivation for POM is that, for com-

plex systems, a single pattern observed at a

specific scale and hierarchical level is not

sufficient to reduce uncertainty in model struc-

ture and parameters. This has long been known

in science. For example, Chargaff_s rule of

DNA base pairing was not sufficient to de-

code the structure of DNA—until combined

with patterns from x-ray diffraction of DNA

and from the tautomeric properties of the pu-

rine and pyrimidine bases (12). Thus, in POM,

multiple patterns observed in real systems at

different hierarchical levels and scales are used

systematically to optimize model complexity

and to reduce uncertainty.

POM was formulated in ecology, a science

with a long tradition of bottom-up modeling.

Ecology, in the past 30 years, has produced as

many individual-based models as all other dis-

ciplines together have produced agent-based

models (13), and has focused more on bottom-

up models that address real systems and prob-

lems (14).

We describe here how observed patterns

can be used to optimize model structure, test

and contrast theories for agent behavior, and

reduce parameter uncertainty. Finally, we

discuss POM as a unifying framework for the

science of agent-based complex systems in

general.

Patterns for Model Structure:
The Medawar Zone

Finding the optimal level of resolution in a

bottom-up model’s structure is a fundamental

problem. If a model is too simple, it neglects

essential mechanisms of the real system,

limiting its potential to provide understanding

and testable predictions regarding the problem

it addresses. If a model is too complex, its

analysis will be cumbersome and likely to get

bogged down in detail. We need a way to find

an optimal zone of model complexity, the

‘‘Medawar zone’’ (Fig. 1).

Modeling has to start with specific ques-

tions (15). From these questions, we first

formulate a conceptual model that helps us

decide which elements and processes of the

real system to include or ignore. With complex

systems, however, the question addressed by

the model is not sufficient to locate the

Medawar zone because ACSs include too

many degrees of freedom. Moreover, the con-

ceptual model may too much reflect our per-

spective as external observers, with our specific

interests, beliefs, and scales of perception.

A key idea of POM is to use multiple

patterns observed in real systems to guide

design of model structure. Using observed

patterns for model design directly ties the

model’s structure to the internal organization

of the real system. We do so by asking: What

observed patterns seem to characterize the

system and its dynamics, and what variables

and processes must be in the model so that

these patterns could, in principle, emerge? For

example, if there are patterns in age structure,

sex ratio, and spatial distribution, then age,

sex, and space should be represented in the
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model; if we know that agents behave dif-

ferently at high densities (e.g., are more ag-

gressive), behavior variability should be in the

model. This use of patterns might force us to

include state variables and processes that are

only indirectly linked to the ultimate purpose

of the model and are not part of our initial

conceptual model. Ideally, the patterns used to

design a model occur at different spatial and

temporal scales and different hierarchical lev-

els, because the key to understanding complex

systems often lies in understanding how pro-

cesses on different scales and hierarchical levels

are bound to each other.

Multiple patterns were key to modeling

spatiotemporal dynamics of the beech forests

of central Europe (Fig. 2). Natural beech forests

are characterized by a spatial mosaic pattern of

successional stages. A cellular automaton mod-

el that focused on this pattern only (16) was too

poor in structure to reveal the forest’s inter-

nal organization. But the forests have more

characteristic patterns. Different successional

stages have different patterns of vertical struc-

ture: e.g., the climax stage has closed canopy

and little understory, and the decaying stage

has canopy gaps and an understory of young

beech. Therefore, a newer model (17, 18) in-

cludes four height classes (from seedlings to

upper canopy) (Fig. 2). The model also ex-

plicitly represents individual big trees because

canopy gaps are caused by windthrow, an

individual-level process. The model’s struc-

ture was thus determined by the multiple

characteristic patterns: The mosaic pattern

determined horizontal spatial scale and reso-

lution, the vertical patterns determined the

need for height classes, and canopy gaps de-

termined that large beeches must be described

individually.

When designed to reproduce multiple pat-

terns, models are more likely to be ‘‘structurally

realistic’’ (10). In particular, model compo-

nents (e.g., individuals) correspond directly to

observed objects and variables, and processes

correspond to the internal organization of the

real system, so that the model ‘‘not only re-

produces the observed real system behavior,

but truly reflects the way in which the real

system operates to produce this behavior’’

[(19), p. 5].

Structurally realistic models can make in-

dependent and testable secondary predictions.

The beech forest model, for example, delivered

independent predictions of forest character-

istics that were not considered during model

development and testing (20). Predictions of

age structure in the canopy and the spatial

distribution of very old ‘‘giant’’ trees were in

good agreement with observations, considera-

bly increasing the model’s credibility and

justifying a completely new application: track-

ing woody debris (21). Complexity in pattern-

oriented bottom-up models is not simply a

burden but can provide rich opportunities to

increase model credibility, gain understanding

(18), and address more questions.

In an example from ecological epidemiol-

ogy, multiple patterns guided the stepwise

design and calibration of a model describing

the spread of rabies among red foxes in central

Europe (22). Observed patterns included the

large-scale wave of rabies prevalence, disease

pockets ahead of the wave, and temporal os-

cillations of prevalence at local and regional

scales. The resulting model reproduced these

patterns, but not by simply applying a pre-

conceived model structure and then fitting it to

the patterns; instead, one pattern after another

was used to gradually refine model structure

(23). Structural realism of this model is

indicated by the striking match between model

predictions and a long-term data set of hunted

foxes, which combines aspects of rabies epi-

demiology (before the onset of rabies control),

fox ecology (after control), and their interac-

tion (during control).

In other ACS disciplines, we found only a

few models explicitly addressing multiple pat-

terns, although many models were implic-

itly based on multiple patterns. A model of

consumer markets (24) addresses three pat-

terns: (i) The statistical distribution of week-

ly sales of fast-moving consumer goods has

fatter tails and thinner peaks than normal dis-

tributions; (ii) there are clusters of high sales

volatility; and (iii) market shares of different

stores follow power-law distributions. Exactly

how these patterns influenced the design of

the model is not clear, but pattern (iii) ap-

pears to be why the model is spatially explicit:

Consumer agents only visit stores that are

nearby.

Patterns for Contrasting
Alternative Theories

Agents continuously make decisions to reach

their goals—e.g., survival and reproductive

success, profiting in a stock market, finding

the best place to settle—in an ever-changing

environment. How do we model these deci-

sions? What information do agents have, what

alternatives do they consider, and how do they

predict the consequences of their decisions?

Many studies of ACSs try only one model of

decision-making and attempt to show that it

leads to results compatible with a limited data

set. This practice, however, may lead to the

impression that bottom-up models include so

many parameters that they can be fitted to data

whether or not their structure and processes are

valid.

A more rigorous strategy for modeling

agent decisions, or other bottom-up processes,

is to use ‘‘strong inference’’ (25) by contrast-

ing alternative decision models, or ‘‘theories’’

(3, 6). First, alternative theories of the agent’s

decisions are formulated. Next, characteristic

patterns at both the individual and higher

levels are identified. The alternative theories

are then implemented in a bottom-up model

and tested by how well they reproduce the

patterns. Decision models that fail to reproduce

the characteristic patterns are rejected, and

additional patterns with more falsifying power

can be used to contrast successful alternatives.

Rigorous techniques can be used to design

experiments and analyze data (6, 26).

As an example, consider the well-known

‘‘boids’’ model (27) that produces schooling-

like behavior from a simple theory: Individual

boids try to avoid collisions, match the velocity

of neighboring individuals, and stay close to

neighbors. The emergence of aggregations

resembling fish schools from this theory (Fig.

3), however, does not prove that boids explains

schooling in real fish.

To define theory for schooling of real fish,

Huth (28) used observed patterns and con-

trasted alternative theories for fish behavior.

Two patterns characterizing fish schools were

defined and quantified: polarization and near-

est neighbor distance (Fig. 3). Eleven alterna-

tive theories for how fish adapt swimming

speed and direction were formulated. In the

first nine theories, the influence of neighbors is

averaged; but in two theories, fish adjust their

swimming to only one neighbor—e.g., the one

DataProblem
Multiple
Patterns

P
ay

of
f

Model complexity

Medawar zone

Fig. 1. Payoff of bottom-up models versus their
complexity. A model’s payoff is determined not
only by how useful it is for the problem it was
developed for, but also by its structural realism;
i.e., its ability to produce independent predictions
that match observations. If model design is guided
only by the problem to be addressed (which often
is the explanation of a single pattern), the model
will be too simple. If model design is driven by all
the data available, the model will be too complex.
But there is a zone of intermediate complexity
where the payoff is high. We call this the
‘‘Medawar zone’’ because Medawar described a
similar relation between the difficulty of a
scientific problem and its payoff (41). If the very
process of model development is guided by
multiple patterns observed at different scales
and hierarchical levels, the model is likely to end
up in the Medawar zone.
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closest in front. These two ‘‘priority’’ theories

failed to reproduce realistic polarization values

(Fig. 3), eliminating them as valid theory.

This example shows that looking at one

pattern may not be sufficient to falsify weak

theory: Looking at nearest neighbor distance

alone suggested that both types of schooling

model produce similar results, but in fact the

priority theories produce schools only as com-

pact, but not as polarized, as real schools.

Moreover, the nine theories based on averaging

differ widely in assumptions, but the fish school’s

properties turned out to be robust to these

assumptions. Demonstrating robustness is also

key to a bottom-up model’s credibility, because it

indicates that we captured the most important

mechanisms. Huth and Wissel’s model also

reproduced several additional patterns not

considered during model development, provid-

ing further support for its structural realism.

This pattern-oriented theory development

approach is increasingly used in models of

ACS. Railsback and Harvey (9) used a stream

trout model to contrast three theories for how

individual fish select habitat. Only a new

theory that assumes that fish select habitat to

maximize expected survival over a future

period reproduced observed patterns of feeding

hierarchy, response to competing species and

predatory fish, seasonal habitat shifts, and

response to reduced food availability. Although

these patterns are each qualitative, or ‘‘weak,’’

together they were able to falsify all but one

theory of habitat selection.

In a model exploring what determines the

access of nomadic herdsmen to pasture lands

owned by village farmers in north Cameroon,

herdsmen negotiate with farmers for access to

pastures (29). Two theories of the herdsmen’s

reasoning were contrasted: (i) ‘‘cost priority,’’

in which herdsmen only consider one dimen-

sion of their relationship to farmers—costs;

and (ii) ‘‘friend priority,’’ in which herdsmen

remember the number of agreements and

refusals they received in previous negotiations.

Real herdsmen sustain a social network across

many villages through repeated interactions,

a pattern reproduced only by the ‘‘friend

priority’’ theory.

In economics, agent-based model experi-

ments have been used to identify character-

istics of artificial stock market investors that

reproduce patterns well known from real stock

markets (30). These patterns include continual

and unpredictable stock price volatility, high

skew and kurtosis in the distribution of profits

among investors, and an inverse relation be-

tween current investment profits and future

price instability. Two assumptions were

contrasted about how much historic data

investors use to predict the outcome of their

investment decisions: (i) Investors all use 25-

year memories of market data, versus (ii)

memory varies from 0.5 to 25 years. Although

none of the simula-

tions reproduced all

the observed market

patterns, the assump-

tion that all investors

use 25-year memories

failed to reproduce

the most basic pat-

tern: price volatility.

This pattern-oriented

analysis indicates

that individual vari-

ation in investment

decision-making is

crucial to stock mar-

ket dynamics.

Testing and con-

trasting alternative

theories or decision

models has several

benefits. We are

forced to be explicit

about how decision

models are formu-

lated and tested; we

can demonstrate how

important the spe-

cific formulation of

a decision—or any

other low-level—

model is; we can ex-

plore null models;

and we can continu-

ally refine models by applying additional

patterns.

Patterns for Parameters:
Coping with Uncertainty

Pattern-oriented modeling can reduce uncer-

tainty in model parameters in two ways. First,

it helps make models structurally realistic,

which usually makes them less sensitive to

parameter uncertainty (31). For example, an

individual-based coyote population model

reproduced an array of observed patterns with

no fine-tuning of parameter values taken from

the literature (32). The trout model (9) had

four parameters that were particularly un-

certain yet important; each had relatively

independent effects on four different outputs

(size versus abundance, for juveniles versus

adults), so they could be calibrated manually

and independently.

Second, the realism of structure and mech-

anism of pattern-oriented models helps param-

eters interact in ways similar to interactions

of real mechanisms. It is therefore possible

to fit all calibration parameters by finding

values that reproduce multiple patterns simul-

taneously. This technique is known as ‘‘in-

verse modeling’’ (33). For a spatially explicit

individual-based model of brown bear dis-

persal from Slovenia into the Alps (34), a

global sensitivity analysis of the uncalibrated

parameter set revealed high uncertainty in

Fig. 2. Pattern-oriented model design. Observed patterns that characterize old-growth beech forests [(A); images: front, M.
Flade; right, C. Rademacher; top, S. Winter] include a horizontal mosaic of developmental stages [(B); x scale: 400 m; modified
from (42)], the vertical patterns of tree size that define the developmental stages [(C), showing the late decaying stage;
x scale: È60 m; modified from (43)], and distributions of fallen large trees [(D), a map of fallen wood; ellipses indicate crown
projections of standing trees; x scale: È60 m; modified from (43)]. To allow these patterns to emerge from it, the model
includes a grid-based horizontal structure [(E), showing grid cells in three developmental stages; x scale: 570 m], a grid-based
vertical structure [(F), showing each grid cell’s percentage cover for four height classes; total area shown: 1 ha)], and
individual representation of large trees [(G), showing one cell’s trees in the largest two height classes; cell area: 204 m2); (E)
to (G) modified from (18)].
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model output. To re-

duce this uncertainty,

two data sets were

used to identify five

patterns. Quantita-

tive criteria for the

agreement between

observed and sim-

ulated patterns were

developed. The in-

direct modeling anal-

ysis started with 557

random parameter

sets covering the plau-

sible ranges of all pa-

rameters. The five

observed patterns

were used as filters:

Only 10 of the 557

parameter sets re-

produced all of them.

This parameter fil-

tering reduced the

model’s global sen-

sitivity by a factor

of 4 (fig. S1).

Indirect parame-

terization is routine

in physical process models (i.e., in chemistry,

hydrology, and climate modeling), but rare

so far in models of ACSs. An encouraging

exception is the agent-based model of an

ancient society, the Kayenta Anasazi, who

occupied the Long House Valley in north-

eastern Arizona (United States) until 1300

A.D. Paleoenvironmental and archaeological

records permitted the development of a de-

tailed, spatially explicit agent-based model of

this society and its history (35). These data

include estimates of annual potential maize

production for each hectare in the study area

for the period 400 to 1400 A.D. and records of

human settlement in the valley. Theories for

agent decisions, for example, splitting house-

holds and moving, were based on detailed re-

gional ethnographies.

The model includes variability in mortality,

fertility, splitting of households, and maize

harvest rates; with eight unknown parameters.

To evaluate these parameters indirectly, the

time series of the number of simulated house-

holds was compared to the historical record.

The best parameter set reproduced all im-

portant trends and population sizes in the ar-

chaeological record. This parameter set also

reproduced important features of the spatial

distribution of the settlements (Fig. 4) and the

gradual northward movement of the popula-

tion. These spatial patterns can be considered

independent predictions, strong indicators of

the model’s structural realism.

Implications and Future Directions

Patterns are widely used by many modelers,

particularly in disciplines where the low-level

entities are physical objects such as atoms

and stars, or are relatively easy to represent,

such as flocking birds, pedestrians in a

panicking crowd, or car drivers [‘‘Brownian

agents’’ (36); see also table S1]. However,

POM is the first attempt to explicitly formulate

a rigorous and comprehensive strategy for

modeling ACSs. The POM strategy is a

Fig. 4. Parameterization and independent predictions of an agent-based model of the Anasazi in
the Long House Valley [modified from (35)]. The simulation environment consists of an 80 by 120
grid of 1-ha squares. Dark gray represents a higher water table; light gray and blue represent a
lower water table. White is nonfarmable land. The red dots represent settlements. (Left) The
historical settlement in 1125 A.D.; (right) prediction of the simulation model for the same year.
The match between data and simulation is imperfect, but the clustering of settlements along the
valley boundaries is captured by the model. The model was calibrated not to the settlement
patterns but to the population size time series for 400 to 1450 A.D.
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Fig. 3. Strong inference by contrasting alternative theories of the agents’ behavior. Boids (27) is a conceptual model that
demonstrates how schools or flocks can emerge from simple rules for behavior [(A); a version of boids by H. Hildenbrandt (44)]. (B)
In a similar model of fish schools (28, 45), 11 alternative theories of fish behavior were contrasted by looking at two school-level
patterns: polarization (p) and nearest neighbor distance (NND); p is 0- if all fish swim in the same direction and p approaches 90-
if all fish swim in random directions. Values of p observed in real fish schools are 10- to 20-; observed NND is often G1 fish body
length. In model versions 1 to 9, the influence of neighbor fish is averaged; in model version 10 and 11 (shaded), fish select a single
neighbor fish and orient their swimming to this neighbor only.
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way to focus on the most essential informa-

tion about a complex system’s internal or-

ganization. Multiple patterns keep us from

building models that are too simple in struc-

ture and mechanism, or too complex and

uncertain. Using patterns to test and contrast

alternative theories for agent behavior or

other low-level processes is a way for the

science of ACS to get beyond clever demon-

stration models and on to rigorous explana-

tions of how real systems are organized and

how they respond to internal and external

forces. POM is just taking root, and we ex-

pect to see its rapid development in the near

future.

Bottom-up models are virtual laboratories

where controlled experiments distinguish

noise from signal in the system’s organiza-

tion. In particular, experiments contrasting

hypotheses for the behavior of interacting

agents will lead to an accumulation of theory

for how the dynamics of systems from mol-

ecules to ecosystems and economies emerge

from bottom-level processes. This approach

may change our whole notion of scientific

theory, which until now has been based on

the theories of physics. Theories of complex

systems may never be reducible to simple

analytical equations, but are more likely to

be sets of conceptually simple mechanisms

(e.g., Darwinian natural selection) that pro-

duce different dynamics and outcomes in

different contexts. POM thus may lead us to

an algorithmic (37), rather than analytical,

approach to theory.
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